Guided implant surgical placement with CAD/CAM CEREC crown

Author, Dr Nilesh Parmar, UK

Guided surgery has been around for a long time. However, very few dentists in the United Kingdom place implants using surgical guides. The reasons for this are multiple, ranging from dentists not wanting to follow the procedure, or not having confidence in the procedure, the increased costs of guide fabrication, and the time delay and extra appointments needed to obtain a fully functional and reliable surgical guide.

In this case report, I shall demonstrate a surgical guide manufactured in-house using the CEREC Bluecam (Sirona). These guides do not require any impressions to be sent to a third party and can be made rather cheaply in the surgery within around 30 minutes. The guide can then be used in conjunction with specific drill keys, which are compatible with the guided surgery drill sets from all leading implant manufacturers.

In this particular case, Facilitate (Astra Tech/DENTSPLY Implants) was used to place the implant. Once the implant was osseointegrated, the final restoration was fabricated chairside using the CEREC MC XL milling machine (Sirona) and an IPS e.max CAD block (Ivoclar Vivadent).

Case report

A young female patient had lost tooth 36 a few years ago and wanted an implant solution. Her medical history was clear and she had a mildly restored dentition with no current dental pathology. Her BPE scores were low, with excellent oral hygiene.

The patient was scanned using the CEREC Bluecam and a proposal for the missing tooth was created. A celibated CBCT scan of the lower jaw was taken using GALILEOS (Sirona) with a CEREC Guide reference body and CEREC proposal overlay. The reference body is identified by the software and the osteotomy position. The patient healed with no pain, no swelling and no discomfort. The patient was discharged on the day of surgery.

In this particular case, an Osseotite (AstraTech/DENTSPLY Implants) (4.0 × 11 mm) was placed immediately. A high primary stability of 40 Ncm was obtained and a 4 mm healing abutment was placed immediately. A soft-tissue profile after two months healing was prepared in accordance with a standard sterile protocol and the area anaesthetised as one would for a regular implant placement. The surgical guide snaps firmly over the existing teeth, expanding over- and undercutting, becoming a very stable platform through which to drill. The Facilitate soft-tissue punch was used to remove the overlying soft tissue, and a standard drilling protocol using the Sirona drill keys was followed.

Once the implant position had been decided, the information was ported to the CEREC software and using a CEREC Guide Bloc a drill body was milled by the CEREC MC XL milling machine. Once this has been milled, it will lock tightly into the thermoplastic drilling template. At this point, the surgical guide is complete and can be used on the patient.

In this particular case, an Osseo-Speed TX implant (DENTSPLY Implants) (4.0 × 11 mm) was placed using the surgical guide. The patient was discharged on the day of surgery.

Figure 1: Reference body with CEREC Guide mill block.
Figure 2: Thermoplastic warmed in hot water and placed over the working model.
Figure 3: Reference body and thermoplastic surgical guide.
Figure 4: Reference body and thermoplastic guide in-situ prior to CBCT scan.

Figure 5: CBCT with reference body and CEREC proposal overlay.
Figure 6: CEREC Guide in-situ.
Figure 7: AstraTech/DENTSPLY Implants fixture-level open-tray impression.
Figure 8: Soft tissue removed.

Figure 9: Directional indicator to assess osteotomy position.
Figure 10: Implant placement.
Figure 11A: Placement of a 4 mm healing abutment at stage 1.
Figure 11B: Post-op RTG view.

Figure 12: Fixture level open-tray impression.
Figure 13: Standard abutment with 3 mm of occlusal clearance.
Figure 14: Soft tissue profile after two months healing.
Figure 15: CEREC image of the abutment.

Figure 16: CEREC image of final restoration.
Figure 17: CEREC image of the block.
Figure 18: E-max crown glazed, stained and ready for sintering.
Figure 19: Milled E-max CAD/CAM crown with screw hole.

Contact Info

He has a master’s degree in Prosthetic Dentistry from the Eastman Dental Institute and a master’s degree in Clinical Implantology from King’s College London. He is one of the few dentists in the UK to hold a degree from all three London dental schools and recently obtained his Certificate in Orthodontics from the University of Warwick. His main area of interest is dental implants and CEREC CAD/CAM technology.

Nilesh runs a successful full-surgery practice close to London and is a visiting implant dentist at two Central London practices. Nilesh has a never-ending passion for his work and is well known for his attention to detail and his belief that every patient he sees should become a patient for life. He offers training and mentoring to dentists starting out in implant dentistry. More information can be found on his website, www.drnileshparmar.com; Twitter: @NileshRParmar; or Facebook: Dr Nilesh R. Parmar.
The Gateway to the Asia Pacific’s Dental Markets
IDEM Singapore is a highly targeted trade exhibition and conference that offers exhibitors unrivalled prospects to meet and do business with the dental fraternity in the Asia Pacific region.

With a powerful combination of an extensive international trade exhibition and a world-class scientific conference, IDEM Singapore has been a cornerstone event in the dental community calendar since 2000.

Capitalize on this unique opportunity and participate in this “must attend” event for every professional who is in the business of dentistry.

International Dental Exhibition and Meeting
April 4 - 6, 2014
Suntec Singapore International Convention and Exhibition Centre

Ms. Stephanie Sim
T: +65 6500 6723
F: +65 6296 2771
E: s.sim@koelnmesse.com.sg
was inserted into the replica and cut back by 3 mm from the occlusal table. This was then powdered and scanned using the CEREC Bluecam, and an IPS e.max CAD C 14 block was milled.

The CEREC 4.2 software was instructed to mill a hole that corresponded to the screw-insertion path on the abutment. This was finished using a high-speed diamond bur with copious irrigation. The crown was glazed and sintered, allowed to cool and bonded to the abutment using Variolink II (Ivoclar Vivadent). The final crown was screwed directly onto the implant and a final check for contacts and occlusion was done.

This process shows just how far CAD/CAM technology has come. An implant can be planned, inserted and stress concentration on whole its volume reduction (less material and far from cracking danger, the choice will more detailed study to compromise between the two implants size/design the buccal surface and it would therefore have been necessary to reduce it. The bonding surface would therefore have been limited, which would have resulted in a great loss of mechanical resistance. We thus decided to use a titanium abutment manufactured from a single block and specially made to allow for such

In cortical bone are less by 20% while the stresses are less by about 40%. The stresses and displacements were significantly higher in the two implant model due to having two close holes, which results in weak area in-between.

Conclusions

This study showed various results between cortical and spongy bone. It was expected that the maximum stresses in the cortical bone was placed in the weak area between the two implants. In addition to be higher than the case of using one wide implant. Although the middle part of spongy bone was stressed to the same level in the two cases, using two implants resulted in more volume of the spongy bone absorbed the load energy** which led to reduction of stress concentration and rate of stress deterioration by moving away from implants. That is considered better distribution of stresses from the mechanics point of view, which may result in longer lifetime. Porcelain coating showed less stress in case of two implants, longer life for the brittle coating material is expected. Contrarily more stresses were found on the gold crown placed on two implants due to its volume reduction (less material under the same load). This is clearly seen in increasing stresses on the two implants, that more load effect was transferred through the weak crown to the two implants. That showed maximum stresses in the area under the crown, while the wide implant showed maximum stresses at its tip. Looking to energy** absorption and stress concentration on whole

Figure 9A & B: Spongy bone deflection in vertical direction (A) wide implant; (B) two implants.

Dental technician’s perspective

When the laboratory (Laboratoire Dentaire Crown Ceram) received this case, we were asked to create three customised anatomical abutments with a titanium interface for an individual and more precise fit, respecting the requirements of biocompatibility and biomechanics, and a coronary part in zirconia for a better aesthetic result.

Once the moulds had been cast, we determined that the considerable angulation of the implants in regions 24 and 25 and their shallow position in the tissue posed difficulties regarding the design of titanium–zirconia abutments. However, Dr Lachkar explained to us that in this case (i.e. the patient’s reluctance to undergo pre-implant surgery) he was forced to place the implants in the bone available and not necessarily in the ideal situation according to a prosthetic plan.

In this case, the titanium interface would have considerably exceeded the buccal surface and it would therefore have been necessary to reduce it. The bonding surface would therefore have been limited, which would have resulted in a great loss of mechanical resistance. We thus decided to use a titanium abutment manufactured from a single block and specially made to allow for such

was concluded that, using the wide implant and two regular sized implants were suggested. The aim of this study was to verify the best solution that has the best effect on alveolar bone under distributed vertical loading.

Therefore, a virtual experiment using Finite Element Analysis was done using ANSYS version 9. A simplified simulation of spongy and cortical bones of the jaw as two co-axial cylinders was utilized. Full detailed with high accuracy simulation for implant, crown, and coating was implemented. The comparison included different types of stresses and deformations of both wide implant and two regular implants under the same boundary conditions and load application.

The three main stresses compressive, tensile, shear and the equivalent stresses in addition to the vertical deformity and the total deformities were considered in the comparison between the two models. The results were obtained as percentages using the wide implant as a reference. The spongy bone showed about 5% less stresses in the two implants model than the one wide diameter implant. The exceptions are the relatively increase in maximum compressive stresses and deformations of order 12% and 0.3% respectively.

The stresses and displacements on the cortical bone are higher in the two implant model due to having two close holes, which results in weak area in-between. The spongy bone response to the two implants was found to be better considering the stress distribution (energy absorbed by spongy bone**). Therefore, it was concluded that, using the wide diameter implant or two average ones as a solution depends on the case primarily. Provided that the available bone width is sufficient mesially-distally and bucco-lingually, the choice will depend on the type of bone. The harder D3 types having harder bone quality and thicker cortical plates are more convenient to the wide implant choice. The D3 types consist of more spongy and less cortical bone, are more suitable to the two implant solution.

Summary

Restoration of single molar using implants encounters many problems; mesio-distal cantilever due to very wide occlusal table is the most prominent. An increased occlusal force posteriorly worsens the problem and increases failures. To overcome the overload, the use of wide diameter implants or two regular sized implants were suggested. The aim of this study was to verify the best solution that has the best effect on alveolar bone under distributed vertical loading.

Therefore, a virtual experiment using Finite Element Analysis was done using ANSYS version 9. A simplified simulation of spongy and cortical bones of the jaw as two co-axial cylinders was utilized. Full detailed with high accuracy simulation for implant, crown, and coating was implemented. The comparison included different types of stresses and deformations of both wide implant and two regular implants under the same boundary conditions and load application.

The three main stresses compressive, tensile, shear and the equivalent stresses in addition to the vertical deformity and the total deformities were considered in the comparison between the two models. The results were obtained as percentages using the wide implant as a reference. The spongy bone showed about 5% less stresses in the two implants model than the one wide diameter implant. The exceptions are the relatively increase in maximum compressive stresses and deformations of order 12%. Therefore, it was concluded that, using the wide diameter implant or two average ones as a solution depends on the case primarily. Provided that the available bone width is sufficient mesially-distally and bucco-lingually, the choice will depend on the type of bone. The harder D3 types having harder bone quality and thicker cortical plates are more convenient to the wide implant choice. The D3 types consist of more spongy and less cortical bone, are more suitable to the two implant solution.

Figure 7A & B: Spongy bone deflection in vertical direction (A) wide implant; (B) two implants.

Figure 9: Strain energy vs area under stress strain curve.

In this case, the titanium interface would have considerably exceeded the buccal surface and it would therefore have been necessary to reduce it. The bonding surface would therefore have been limited, which would have resulted in a great loss of mechanical resistance. We thus decided to use a titanium abutment manufactured from a single block and specially made to allow for such

** The area under the __-__ curve up to a given value of strain is the total mechanical energy per unit volume consumed by the material in straining it to that value (Fig. 9). This is easily shown as follows in equation 2:

$$ F = \int_{0}^{\epsilon} E \, \epsilon \, d\epsilon$$